400G QSFP-DD to 2x200G QSFP56 Passive Copper # **Breakout Direct Attach Cable** #### **Features** - Compatible with IEEE 802.3bj and IEEE 802.3cd - Supports aggregate data rates of 400Gb ps(PAM4) - Optimized construction to minimize insertion loss and cross talk - Pull-to-release slide latch design - 28AWG through 30AWG cable - Straight and break out assembly configurations available - Customized cable braid termination limits EMI radiation - Customizable EEPROM mapping for cable signature - RoHS compliant #### **Application** - Switches, servers and routers - Data Center networks - Storage area networks - High performance computing - Telecommunication and wireless infrastructure - Medical diagnostics and networking - Test and measurement equipment #### **Standards Compliance** • 400G Ethernet(IEEE 802.3cd) #### **Description** QSFP-DD_2XQSFP56 passive copper cable assembly feature eight differential copper pairs, providing four data transmission channels at speeds up to 56Gb ps(PAM4) per channel, and meets 400G Ethernet and InfiniBand Enhanced Data Rate(EDR) requirements. Available in a broad rang of wire gages-from 28AWG through 30AWG-this 400G copper cable assembly features low insertion loss and low cross talk. QSFP-DD_2XQSFP56 uses PAM4 signals for transmission, which doubles the rate. However, there are more stringent requirements for cable insertion loss. For detailed requirements, please see High Speed Characteristics. ### **High Speed Characteristics** **Table1-High Speed Characteristics** | Parameter | Symbol | Min | Typical | Max | Unit | Note | |---|----------------|--------|---------|-------|------|----------------------| | Differential Impedance | TDR | 90 | 100 | 110 | n | | | Insertion loss | SDD21 | -16.06 | | | dB | At 13.28 GHz | | Differential Return Loss | SDD11
SDD22 | | | See 1 | dB | At 0.05 to 4.1 GHz | | | | | | See 2 | dB | At 4.1 to 19 GHz | | Common-mode to common-mode output return loss | SCC11
SCC22 | | | -2 | dB | At 0.2 to 19 GHz | | Differential to common-mode return loss | SCD11 | | | See 3 | dB | At 0.01 to 12.89 GHz | #### 400G QSFP-DD to 2x200G QSFP56 DAC | | SCD22 | | See 4 | | At 12.89 to 19 GHz | |--|----------|--|-------|----|----------------------| | Differential to common Mode Conversion
Loss | | | -10 | | At 0.01 to 12.89 GHz | | | SCD21-IL | | See 5 | dB | At 12.89 to 15.7 GHz | | | | | -6.3 | | At 15.7 to 19 GHz | #### Notes: - [1] Reflection Coefficient given by equation SDD11(dB) < -16.5 + 2 \times SQRT(f), with f in GHz - [2] Reflection Coefficient given by equation SDD11(dB) $<-10.66 + 14 \times log10(f/5.5)$, with f in GHz - [3] Reflection Coefficient given by equation SCD11(dB) < -22 + (20/25.78)*f, with f in GHz - [4] Reflection Coefficient given by equation SCD11(dB) < -15 + (6/25.78)*f, with f in GHz - [5] Reflection Coefficient given by equation SCD21(dB) <-27 + (29/22)*f, with f in GHz #### Pin arrangement #### **QSFP-DD** end # **QSFP-DD Pin Function Definition** # **Table2-Pin Description** | Pin | Logic | Symbol | Description | Notes | |-----|------------|-------------|--|-------| | 1 | | GND | Ground | 1 | | 2 | CML-I | Tx2n | Transmitter Inverted Data Input | | | 3 | CML-I | Tx2p | Transmitter Non-Inverted Data Input | | | 4 | | GND | Ground | | | 5 | CML-I | Tx4n | Transmitter Inverted Data Input | | | 6 | CML-I | Tx4p | Transmitter Non-Inverted Data Input | | | 7 | | GND | Ground | 1 | | 8 | LVTTL-I | ModSelL | Module Select | | | 9 | LVTTL-I | ResetL | Module Reset | | | 10 | | Vcc Rx | +3.3V Power Supply Receiver | 2 | | 11 | LVCMOS-I/O | SCL | 2-wire serial interface clock | | | 12 | LVCMOS-I/O | SDA | 2-wire serial interface data | | | 13 | | GND | Ground | 1 | | 14 | CML-O | Rx3p | Receiver Non-Inverted Data Output | | | 15 | CML-O | Rx3n | Receiver Inverted Data Output | | | 16 | GND | GND | Ground | 1 | | 17 | CML-O | Rx1p | Receiver Non-Inverted Data Output | | | 18 | CML-O | Rx1n | Receiver Inverted Data Output | | | 19 | | GND | Ground | 1 | | 20 | | GND | Ground | | | 21 | CML-O | Rx2n | Receiver Inverted Data Output | | | 22 | CML-O | Rx2p | Receiver Non-Inverted Data Output | 1 | | 23 | | GND | Ground | | | 24 | CML-O | Rx4n | Receiver Inverted Data Output | | | 25 | CML-O | Rx4p | Receiver Non-Inverted Data Output | 1 | | 26 | | GND | Ground | | | 27 | LVTTL-O | Mod PrsL | Module Present | | | 28 | LVTTL-O | IntL/RxLOSL | Interrupt. Optionally configurable as RxLOSL via the management interface (SFF-8636) | 2 | | 29 | | VccTx | +3.3V Power supply transmitter | 2 | | 30 | | Vcc1 | +3.3V Power supply | | | 31 | LVTTL-I | InitMode | Initialization mode; In legacy QSFP applications, the InitMode pad is called LPMODE | 1 | | 32 | | GND | Ground | | | 33 | CML-I | ТхЗр | Transmitter Non-Inverted Data Input | | | 34 | CML-I | Tx3n | Transmitter Inverted Data Input | 1 | | 35 | | GND | Ground | | #### 400G QSFP-DD to 2x200G QSFP56 DAC | 36 | CML-I | Tx1p | Transmitter Non-Inverted Data Input | | |----|-------|----------|-------------------------------------|-----| | 37 | CML-I | Tx1n | Transmitter Inverted Data Input | 1 | | 38 | | GND | Ground | 1 | | 39 | | GND | Ground | | | 40 | CML-I | Tx6n | Transmitter Inverted Data Input | | | 41 | CML-I | Тх6р | Transmitter Non-Inverted Data Input | 1 | | 42 | | GND | Ground | | | 43 | CML-I | Tx8n | Transmitter Inverted Data Input | | | 44 | CML-I | Tx8p | Transmitter Non-Inverted Data Input | | | 45 | | GND | Ground | 1 | | 46 | | Reserved | For future use | 3 | | 47 | | VS1 | Module Vendor Specific 1 | 3 | | 48 | | VccRx1 | 3.3V Power Supply | 2 | | 49 | | VS2 | Module Vendor Specific 2 | 3 | | 50 | | VS3 | Module Vendor Specific 3 | 3 | | 51 | | GND | Ground | 1 | | 52 | CML-O | Rx7p | Receiver Non-Inverted Data Output | | | 53 | CML-O | Rx7n | Receiver Inverted Data Output | | | 54 | | GND | Ground | 1 | | 55 | CML-O | Rx5p | Receiver Non-Inverted Data Output | | | 56 | CML-O | Rx5n | Receiver Inverted Data Output | | | 57 | | GND | Ground | | | 58 | | GND | Ground | 1 | | 59 | CML-O | Rx6n | Receiver Inverted Data Output | | | 60 | CML-O | Rx6p | Receiver Non-Inverted Data Output | | | 61 | | GND | Ground | 1 | | 62 | CML-O | Rx8n | Receiver Inverted Data Output | | | 63 | CML-O | Rx8p | Receiver Non-Inverted Data Output | | | 64 | | GND | Ground | 1 | | 65 | | NC | No Connect | 3 | | 66 | | Reserved | For future Use | 3 | | 67 | | VccTx1 | 3.3V Power Supply | 2 | | 68 | | Vcc2 | 3.3V Power Supply | 2 | | 69 | | Reserved | For future Use | 3 | | 70 | | GND | Ground | 1 | | 71 | CML-I | Тх7р | Transmitter Non-Inverted Data Input | | | 72 | CML-I | Tx7n | Transmitter Inverted Data Input | | | 73 | | GND | Ground | 1 | | 74 | CML-I | Тх5р | Transmitter Non-Inverted Data Input | | | 75 | CML-I | Tx5n | Transmitter Inverted Data Input | | | 76 | | GND | Ground | 1 | | | i . | 1 | | _ i | #### QSFP56 end **Table3-Pin Description** | Pin | Symbols | Logic | Description | Notes | |-----|---------|------------|-------------------------------------|-------| | 1 | GND | | Ground | 1 | | 2 | Tx2n | CML-I | Transmitter Inverted Data Input | | | 3 | Tx2p | CML-I | Transmitter Non-Inverted Data Input | | | 4 | GND | | Ground | 1 | | 5 | Tx4n | CML-I | Transmitter Inverted Data Input | | | 6 | Tx4p | CML-I | Transmitter Non-Inverted Data Input | | | 7 | GND | | Ground | | | 8 | ModSelL | LVTTL-I | Module Select | | | 9 | ResetL | LVTTL-I | Module Reset | | | 10 | Vcc Rx | | +3.3V Power Supply Receiver | 2 | | 11 | SCL | LVCOMS-I/O | 2-wire serial interface clock | | | 12 | SDA | LVCOMS-I/O | 2-wire serial interface data | | | 13 | GND | | Ground | | | 14 | Rx3p | CML-O | Receiver Non-Inverted Data Output | | | 15 | Rx3n | CML-O | Receiver Inverted Data Output | | | 16 | GND | | Ground | | | 17 | Rx1p | CML-O | Receiver Non-Inverted Data Output | | | 18 | Rx1n | CML-O | Receiver Inverted Data Output | 1 | | 19 | GND | | Ground | 1 | | 20 | GND | | Ground | | | 21 | Rx2n | CML-O | Receiver Inverted Data Output | | | 22 | Rx2p | CML-O | Receiver Non-Inverted Data Output | | | 23 | GND | | Ground | | | 24 | Rx4n | CML-O | Receiver Inverted Data Output | | | 25 | Rx4p | CML-O | Receiver Non-Inverted Data Output | | | 26 | GND | | Ground | 1 | #### 400G QSFP-DD to 2x200G QSFP56 DAC | 27 | Mod PrsL | LVTTL-O | Module Present | | |----|----------|---------|-------------------------------------|---| | 28 | IntL | LVTTL-O | Interrupt | | | 29 | VccTx | | +3.3V Power supply transmitter | 2 | | 30 | Vcc1 | | +3.3V Power supply | 2 | | 31 | LPMode | LVTTL-I | Low Power Mode | | | 32 | GND | | Ground | 1 | | 33 | Тх3р | CML-I | Transmitter Non-Inverted Data Input | | | 34 | Tx3n | CML-I | Transmitter Inverted Data Input | | | 35 | GND | | Ground | | | 36 | Tx1p | CML-I | Transmitter Non-Inverted Data Input | | | 37 | Tx1n | CML-I | Transmitter Inverted Data Input | | | 38 | GND | | Ground | 1 | ### **Mechanical Specifications** The connector is compatible with the QSFP-DD and SFF-8436 specification. | Length (m) | Cable AWG | |------------|-----------| | 1.5 | 30 | | 2.5 | 28 | # **Regulatory Compliance** ### **Table4-Regulatory Compliance** | Feature | Test Method | Performance | | |--|---|---|--| | Electrostatic Discharge (ESD) to the Electrical Pins | MIL-STD-883C Method 3015.7 | Class 1(>2000 Volts) | | | | FCC Class B | Compliant with Standards | | | Electromagnetic
Interference(EMI) | CENELEC EN55022 Class B | | | | | CISPR22 ITE Class B | | | | RF Immunity(RFI) | IEC61000-4-3 | Typically Show no Measurable Effect from a 10V/m Field Swept from 80 to 1000MHz | | | RoHS Compliance | RoHS Directive 2011/65/EU and it's Amendment Directives (EU) 2015/863 | RoHS (EU) 2015/863 compliant | | | REACH Compliance | REACH Regulation (EC) No 1907/2006 | REACH (EC) No 1907/2006 compliant | |