

GLQ3M0C31

40Gb/s QSFP+ PSM4 Optical Transceiver

Features

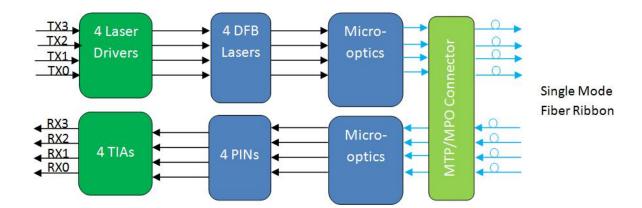
- 4 Parallel lanes design
- Up to 11.2Gb/s data rate per channel
- Aggregate Bandwidth of up to 44.0G
- QSFP+ MSA compliant
- Up to 10km transmission on single mode fiber (SMF)
- Maximum power consumption 3.5W
- Single +3.3V power supply
- Operating case temperature: 0 to 70oC
- RoHS-6 compliant

Applications

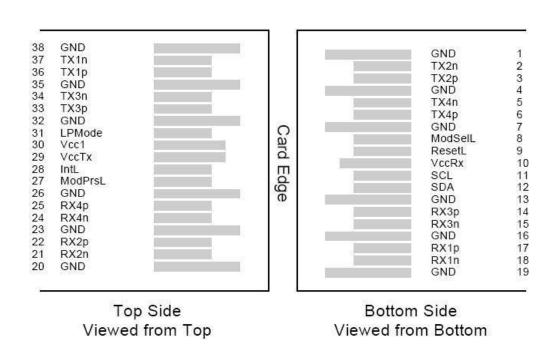
- 40G Ethernet
- Infiniband QDR, DDR and SDR
- Data center and Enterprise networking

General Description

This product is a parallel 40Gb/s Quad Small Form-factor Pluggable (QSFP+) optical module. It provides increased port density and total system cost savings. The QSFP+ full-duplex optical module offers 4 independent transmit and receive channels, each capable of 10Gb/s operation for an aggregate data rate of 40Gb/s on 10km of single mode fiber.


An optical fiber ribbon cable with an MTP/MPO connector can be plugged into the QSFP+ module receptacle. Proper alignment is ensured by the guide pins inside the receptacle. The cable usually cannot be twisted for proper channel to channel alignment. Electrical connection is achieved through a z-pluggable 38-pin connector per MSA requirement.

The module operates with single +3.3V power supply. LVCMOS/LVTTL global control signals, such as Module Present, Reset, Interrupt and Low Power Mode, are available with the modules. A 2-wire serial interface is available to send and receive more complex control signals, and to receive digital diagnostic information. Individual channels can be addressed and unused channels can be shut down for maximum design flexibility.

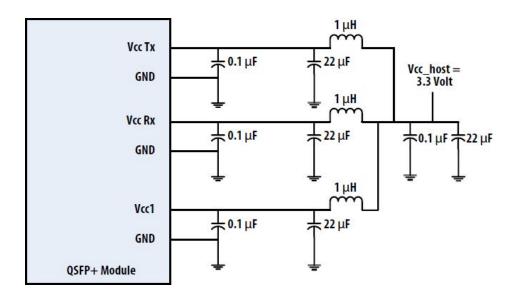

The product is designed with form factor, optical/electrical connection and digital diagnostic interface according to the QSFP+ Multi-Source Agreement (MSA). It has been designed to meet the harshest external operating conditions including temperature, humidity and EMI interference. The module can be managed through the I2C two-wire serial interface.

Transceiver Block Diagram

Pin Assignment

Pin Definition

PIN	Logic	Symbol	Name/Description	Notes		
1		GND	Ground	1		
2	CML-I	Tx2n	Transmitter Inverted Data Input			
3	CML-I	Tx2p	Transmitter Non-Inverted Data output			
4		GND	Ground	1		
5	CML-I	Tx4n	Transmitter Inverted Data Input			
6	CML-I	Tx4p	Transmitter Non-Inverted Data output			
7		GND	Ground	1		
8	LVTLL-I	ModSelL	Module Select			
9	LVTLL-I	ResetL	Module Reset			
10		VccRx	+3.3V Power Supply Receiver	2		
11	LVCMOS-I/O	SCL	2-Wire Serial Interface Clock			
12	LVCMOS-I/O	SDA	2-Wire Serial Interface Data			
13		GND	Ground			
14	CML-O	Rx3p	Receiver Non-Inverted Data Output			
15	CML-O	Rx3n	Receiver Inverted Data Output			
16		GND	Ground	1		
17	CML-O	Rx1p	Receiver Non-Inverted Data Output			
18	CML-O	Rx1n	Receiver Inverted Data Output			
19		GND	Ground	1		
20		GND	Ground	1		
21	CML-O	Rx2n	Receiver Inverted Data Output			
22	CML-O	Rx2p	Receiver Non-Inverted Data Output			
23		GND	Ground	1		
24	CML-O	Rx4n	Receiver Inverted Data Output			
25	CML-O	Rx4p	Receiver Non-Inverted Data Output			
26		GND	Ground			
27	LVTTL-O	ModPrsL	Module Present			
28	LVTTL-O	IntL	Interrupt			
29		VccTx	+3.3 V Power Supply transmitter	mitter 2		
30		Vcc1	+3.3 V Power Supply	2		
31	LVTTL-I	LPMode	Low Power Mode			
32		GND	Ground	1		


33	CML-I	Tx3p	Transmitter Non-Inverted Data Input	
34	CML-I	Tx3n	Transmitter Inverted Data Output	
35		GND	Ground	1
36	CML-I	Tx1p	Transmitter Non-Inverted Data Input	
37	CML-I	Tx1n	Transmitter Inverted Data Output	
38		GND	Ground	1

Notes:

1. GND is the symbol for signal and supply (power) common for QSFP+ modules. All are common within the QSFP+ module and all module voltages are referenced to this potential unless otherwise noted. Connect these directly to the host board signal common ground plane.

VccRx, Vcc1 and VccTx are the receiver and transmitter power suppliers and shall be applied concurrently. Recommended host board power supply filtering is shown in Figure 3 below. Vcc Rx, Vcc1 and VccTx may be internally connected within the QSFP+ transceiver module in any combination. The connector pins are each rated for a maximum current of 500mA.

Recommended Power Supply Filter

Absolute Maximum Ratings

It has to be noted that the operation in excess of any absolute maximum ratings might cause permanent damage to this module.

Parameter	Symbol	Min	Max	Units	Notes
Storage Temperature	Ts	-40	85	degC	
Operating Case Temperature	ТОР	0	70	degC	
Power Supply Voltage	VCC	-0.5	3.6	V	
Relative Humidity (non-condensation)	RH	0	85	%	
Damage Threshold, each Lane	TH_d	3.3		dBm	

Recommended Operating Conditions and Power Supply Requirements

Parameter	Symbol	Min	Typical	Max	Units
Operating Case Temperature	TOP	0		70	degC
Power Supply Voltage	VCC	3.135	3.3	3.465	V
Data Rate, each Lane			10.3125	11.2	Gb/s
Control Input Voltage High		2		Vcc	V
Control Input Voltage Low		0		0.8	V
Link Distance with G.652	D	0.002		10	km

Electrical Characteristics

The following electrical characteristics are defined over the Recommended Operating Environment unless otherwise specified.

Parameter	Symbol	Min	Typical	Max	Units	Notes
Power Consumption				3.5	W	
Supply Current	Icc			1.1	A	
Transceiver Power-on Initialization Time				2000	ms	1
	7	Fransmitte	er(each Lane)			
Single-ended Input Voltage Tolerance (Note 2)		-0.3		4.0	V	Referred to TP1 signal common
AC Common Mode Input Voltage Tolerance		15			mV	RMS
Differential Input Voltage Swing Threshold		50			mVpp	LOSA Threshold
Differential Input Voltage Swing	Vin,pp	190		700	mVpp	
Differential Input Impedance	Zin	90	100	110	Ohm	
Differential Input Return Loss		See	IEEE 802.3ba 86	6A.4.11	dB	10MHz-11.1GHz
J2 Jitter Tolerance	Jt2	0.17			UI	
J9 Jitter Tolerance	Jt9	0.29			UI	
Data Dependent Pulse Width Shrinkage (DDPWS) Tolerance		0.07			UI	
Eye Mask Coordinates {X1, X2 Y1, Y2}			0.11, 0.31 95, 3	50	UI mV	Hit Ratio = $5x10-5$
		Receiver	(each Lane)			
Single-ended Output Voltage		-0.3		4.0	V	Referred to signal common
AC Common Mode Output				7.5	mV	RMS
Voltage						
Differential Output Voltage Swing	Vout,pp	300		850	mVpp	
Differential Output Impedance	Zout	90	100	110	Ohm	
Termination Mismatch at 1MHz				5	%	

Differential Output Return Loss		See IEEE 802.3ba 86A.4.2.1			dB	10MHz-11.1GHz
Common Mode Output Return Loss		See IEEE 802.3ba 86A.4.2.2		dB	10MHz-11.1GHz	
Output Transition Time		28			ps	20% to 80%
J2 Jitter Output	Jo2			0.42	UI	
J9 Jitter Output	Jo9			0.65	UI	
Eye Mask Coordinates {X1, X2 Y1, Y2}		0.29, 0.5 150, 425 UI mV Hit Ratio		Hit Ratio = 5x10-5		

Notes:

- 1.Power-on Initialization Time is the time from when the power supply voltages reach and remain above the minimum recommended operating supply voltages to the time when the module is fully functional.
- ${\bf 2. The \ single \ ended \ input \ voltage \ tolerance \ is \ the \ allowable \ range \ of \ the \ instantaneous \ input \ signals.}$

Optical Characteristics

All parameters are specified under the recommended operating conditions with PRBS31 data pattern unless otherwise specified.

Parameter	Symbol	Min	Typical	Max	Units	Notes
	Trai	smitter	·			
Center Wavelength	λC	1260	1310	1355	nm	
Side Mode Suppression Ratio	SMSR	30			dB	
Total Average Launch Power	PT			7.5	dBm	
Average Launch Power, each Lane	PAVG	-5.5		1.5	dBm	1
Optical Modulation Amplitude (OMA), each Lane	POMA	-4.5		2.5	dBm	2
Difference in Launch Power between any Two Lanes (OMA)	Ptx,diff			6.5	dB	
Launch Power in OMA minus Transmitter and Dispersion Penalty (TDP), each Lane		-5.5			dBm	
TDP, each Lane	TDP			3.2	dB	
Extinction Ratio	ER	3.5			dB	
Relative Intensity Noise	RIN			-128	dB/Hz	
Optical Return Loss Tolerance	TOL			12	dB	
Transmitter Reflectance	RT			-12	dB	
Average Launch Power OFF Transmitter, each Lane	Poff			-30	dBm	
Transmitter Eye Mask Definition {X1, X2, X3, Y1, Y2, Y3}		{0.25,	{0.25, 0.4, 0.45, 0.25, 0.28, 0.4}			
	Re	ceiver				
Center Wavelength	λC	1260	1310	1355	nm	
Damage Threshold, each Lane	THd	3.3			dBm	3
Average Receive Power, each Lane		-12.6		1.5	dBm	
Receiver Reflectance	RR			-12	dB	
Receive Power (OMA), each Lane				2.5	dBm	

Receiver Sensitivity (OMA), each Lane	SEN		-12.6	dBm	Infor- mative
Difference in Receive Power between any Two Lanes (OMA)	Prx,diff		7.5	dB	
LOS Assert	LOSA	-30		dBm	
LOS Deassert	LOSD		-15	dBm	
LOS Hysteresis	LOSH	0.5		dB	
Receiver Electrical 3 dB upper Cutoff Frequency, each Lane	Fc		12.3	GHz	

Notes:

- 1. The maximum transmitter average optical power of 1.5 dBm is well within the guardband of receiver overload specifications of commercially available 10GBASE-LR SFP+ transceivers offered by InnoLight and other vendors.
 - 2. Even if the TDP < 1 dB, the OMA min must exceed the minimum value specified here.
- 3. The receiver shall be able to tolerate, without damage, continuous exposure to a modulated optical input signal having this power level on one lane. The receiver does not have to operate correctly at this input power.

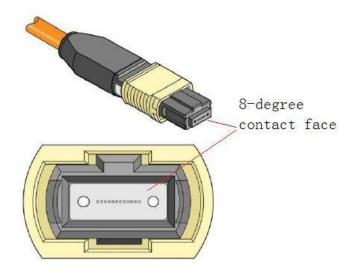
Digital Diagnostic Functions

The following digital diagnostic characteristics are defined over the normal operating conditions unless otherwise specified.


Parameter	Symbol	Min	Max	Units	Notes
Temperature monitor absolute error	DMI_Temp	-3	3	degC	Over operating temperature range
Supply voltage monitor absolute error	DMI_VCC	-0.1	0.1	V	Over full operating range
Channel RX power monitor absolute error	DMI_RX_Ch	-2	2	dB	1
Channel Bias current monitor	DMI_Ibias_Ch	-10%	10%	mA	
Channel TX power monitor absolute error	DMI_TX_Ch	-2	2	dB	1

Notes:

1. Due to measurement accuracy of different single mode fibers, there could be an additional \pm 1-1 dB fluctuation, or a \pm 1-3 dB total accuracy.


Mechanical Dimensions

Attention: To minimize MPO connection induced reflections, an MPO receptacle with 8-degree angled end-face is utilized for this product. A female MPO connector with 8-degree end-face should be used with this product as illustrated in following figure.

ESD

This transceiver is specified as ESD threshold 1KV for high speed data pins and 2KV for all others electrical input pins, tested per MIL-STD-883, Method 3015.4 /JESD22-A114-A (HBM). However, normal ESD precautions are still required during the handling of this module. This transceiver is shipped in ESD protective packaging. It should be removed from the packaging and handled only in an ESD protected environment.

Ordering Information

GLQ3M0C31	QSFP+ PSM4 10km optical transceiver with full real-time digital diagnostic onitoring and pull tab
-----------	---